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UDC 538.3

PROBLEM OF AN EQUIVALENT ROD IN NONLINEAR THEORY OF SPRINGS”

V.L. BERDICHEVSKII and V.G. SUTYRIN

A spring with a large number of coils can approximately be considered as a one-
dimensional continuum (an equivalent rod), whose particles are the coils of the
spring. The problem of an equivalent rod is to construct the eguations describing
this continuum and to calculate the characteristics of the equivalent rod by means
of the coil geometry and the elastic properties of the spring material. The problem
of an equivalent rod has been investigated thoroughly in linear theory /1-6/. In
the geometrically nonlinear theory it remains substantially open (only certain exact
solutions of problems on the tension, torsion, and bending of springs were known /7-—
10/).

The problem of an equivalent rod is solved below by a variational-asymptotic
method /11— 14/.

1. Theory of inextensible rods /7,14/. In the classical theory, a rod is modeled
by a curve [T, eguipped with an ortho reference triad 1, (g, b, ¢ =1, 2, 3}, whose vector T3 is
tangent to I, The curve I can be considered as the middle line of a rod, while the plane
swept by the vector Ta can be considered as the plane of the transverse section of the rod.
The rod state of strain is given by the components r‘(a of the radius-vector of points of
the curve I’ and by the components 1T () of the vectoxrs T. (€10, I] is the arclength along

T, the superscripts i, j, k correspond to projections on the axes of the Cartesian coordin-
ate system of the observer 7z and run through the values 1,2,3; the qguantities with super-
and subscripts agree; the site of the index is selected in conformity with the rule of sum=-
mation over repeated sub~ and superscripts). It is assumed that the coordinate system of the
observer and the ortho reference triaed 7, have identical orientation, and the determinant of
the orthogonal matrix [ ] = 4.

The quantities ' and 1T, satisfy the constraints

driidE = 5, Tt = Ogp (1.1)

where §, is the Kronecker delta. The state of deformed of an inextensible rod has three
functionally independent degrees of freedom.

The curvature and torsion of the curve I' is characterized by the quantities Wy =
YolapT#0T%, where eg, is the Levi-Civita symbol, the comma before the § in the subscript de-
notes differentiation with respect to &

The measures of the strain of an inextensible rod £, are introduced by the equalities

Qa=0)a—(0(o)a {1.2)

The subscript (0) denotes the value of quantities in the unstrained state. Rod bending
is characterized by the quantities Qfa, B, v, § =1, 2), and the torsionby the guantity Q.

When r* and ¢! are given at the ends of the rod, the true position of the rod is the
stationary point of the functional /14/

14
1="{110,0d% (1.3)
9

where Job is the cross-section stiffness tensor.

2. Springs. A spring is an elastic rod with a special undeformed state. We will des-
cribe these states (in this section the consideration is for the undeformed state; to avoid
awkwardness in all the formulas the subscript ( referring to the undeformed state will be omit-
ted).

Let there be a certain space curve T given by the equations z‘z=?‘(§L where { is a
natural parameter along I, and provided with an ortho reference triad T, () such that Ty =

d#''d;. Let us represent the radius-vector of the rod middie line T from which the spring is
coiled in the form
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rO=FO -+t (DD t=L6 (2.1

Here p*(8) and [ (F) are functions satisfying the condition drY/didr/dt = 1. The quant-
ities p°(E) have the meaning of projections of the local radius vector ,i— 7 on the ortho
reference triad vector Tg.

Let us introduce the projections a, of the vectors 7, with which the rod middle line is
provided, by the vector ¥,

T = o, "Ty! (2.2)

Just as all the orthogonal matrices to be encountered later, the orthogonal matrix I eenl
has a determinant equal to { by definition.

Formulas (2.1) and (2.2} can be written for the undeformed state of an arbitrary rod.

We call an elastic rod a spring if functions 7#'({) and 7%, ({) exist such that the func~-
tions p?(§), aap () and the physical characteristics jeb ) are represented in the form of a
function f(n,§) of a fast variable  and a slow variable ! (where m =1 (§)) with the fol-
lowing properties: 1) the function [ is periodic in vy with period one: 2) dpyldi= I1/A(§) >

const > 0, A< {; 3) the characteristic scale L of variationof the function f(n, E)ln=cons: and
A(§) in § satisfy the condition A<CL. Moreover, for springs the functions == d{/dt and
B, = HyemcTt "y Ti° will be considered functions of the slow variable §. The quantity A (§) for
springs has the meaning of the local length of a coil of the spring.

For brevity later, we assume that explicit mention of the arguments % or £ in any of the
functions means that it satisfies conditions 1)— 3).

Let us present an example. We set 7= 4if, 7, = bi, Fi = ¢}, where !, b, ¢! are constants of
mutually orthogonal unit vectors, and

pt == R ces 2an, p*= Rsin2my, p° = 0, 3= A™f (2.3
t= ut, x=sing, o= [—nf2, a/2]

Here R is the radius of the spring, the positive quantity A is the length of a coil, and
@ is the pitch of the coil. The quantities R, A and o are constants related by the expres-
sion 2nR = Acosa.

The curve I defined by (2.1) and (2.3) is a reqular spiral line. The ortho reference
triadwithwhich the line I' is provided will be selected to consist of the tangent vector 1
and the geometric nommal and binormal t,,7,. Then the components of the orthogonal matrix zg,
representing the projections of the vectors 1, on the vectors % are determined by the form-
ulas

&y = (—cos 2nm, —sin 2nn, 0) (2.4)
Gy = (sin @ sin 2nm, —sin & cos 2nm, COS @) ’
Qg = {—c0s & sin 2nn, cos & cos 2nn, sin @)

We take the functions I as constants. Springs defined in this manner are called re-
gular cylindrical springs, their geometry is given by two parameters, R and « , say. The gquant-~
ities; o, are constant here

@y =0, o, = 2nA-lcos a, @y = 2nA"lsina

where @, and @, have the respective meanings of the geometric curvature and torsion of the
curve T, while the function == 0.

We define the operation of taking the average for any function of the fast variable n by
the formula

<f> =S 1(mdn

If f3=f(n, &, then the quantity (f> can depend on § and satisfy condition 3), i.e., if
is a slightly varying function of § at distances of the order of A.

Without limiting the generality, it can be considered that the functions p%(n, &) in (2.1)
are subject to the constraints

p* (s B> =0 (2.5)

If the functions p® do not satisfy (2.5), then its satisfaction could be achieved by
making the replacement F* 7 4 (p %t _
The relationship D= 7 holds because of (2.5). Therefore, the curve T yields the mid-
dle axis of the spring and it can be interpreted as the axis of an equivalent rod. )
The equivalent rod is provided with the ortho reference triad T,. If the functions 7 and
7, (and therefore also #) are known, then the ortho reference triad ¥, is not reproduced
uniquely: the transformation of turn of the vectors 7T, through a certain angle around the
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vector ¥, does not change 1), %’ and 7

- - - - 2.6)
Tot > Talaaf, Tot — T ¢

Oy —> anavbv Clgg —> Cag

Pa— Paaasy P~ 3

Hence, additional conditions uniquely defining the ortho reference triad T, are needed. We
take the following constraints as such conditions

Prle=0. Pijn=e>0 (2.7

Conditions (2.7) define the orthogonal matrix ag® () uniquely if these conditions are not
satisfied for the ortho reference triad T, taken initially.
The quantities w, for springs are calculated from the formulas

g (1 B) = 80 + 000’ + faCan?{t00a” (2.8
0, (’Vh §) == 1;12811&:“?2{&40

The vertical bar in the subscripts before the 0 and i denote partial differentiation of
the functions dependent on the fast and slow variables with respect to 0, §.

The solution of the problem (1.l)~ (1.3) for springs oscillates rapidly. The exact form-
ulation of the problem (l.1)— (1.3) should be replaced by an approximate "average" in which
functions of § that vary slightly at distances of the order of the coil length A appear.

3. The problem of an equivalent rod. 1t is later shown that for springs the func-
tions ri(f) and 1t (§) in the deformed state are representable in the form
P=FQ+ MO t=16) G.1
et =al T, 1=1@

The functions p° are of the order of A (as A —0). The functions p® and o, depend on P and
i'.f and their first derivatives, however, this is not emphasized in the notation.

The functions x = df/dE and &, = Yyewt;"%:" vary slightly at a distance of the order of
A. The functions ¢°(n) and the orthogonal matrix a.p(n) satisfy conditions 1)~ 3) of Sect.
2 and the constraints (2.5) and (2.7).

The functions F' and T, determine the state of the equivalent rod in the deformed posi-
tion and are found from the condition of stationarity of the functional

1
{Faz (3.2)
s

in a set of functions # and T, satisfying the constraints
AF/dE = Ty, T = 8ap (3.3)
Here F is a function of the measure of the deformed of the equivalent rod
Qo = %0, — XD and y = 1/, {(x/%0)* — 1),

which are guantities characterizing the undeformed state %9y Gyoye and the physical charact-
eristics I°* of the rod from which the spring is coiled.
To calculate F the problem must be solved per coil

F=inf®, @= (W00, (3.4
Q= A1 (B, — o) a) + %at$2® - (Ghab — o) o) Yoy

where the lower bound is taken over all periodic functions g () and pa (1) satisfying the
constraints

am:a'bca ab (3.5)
Glas = #Bgs + A~'pa 1y + €abe (X" + oopyy) p° (3.6)
D=0, plr=o=0, pilp=o>0 (3.7

The quantities &, A % and ek inthe problem (3.4)— (3.7) are constant parameters,
while 7% @4, and o are given periodic functions of 1.
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The boundary conditions for the functions 7 and %, are found from the calculated func-
tions p®(n) and @ (M) and the known boundary values of the functions r* and T,' from (3.1).

If justone end of the spring is rigidly clamped, while a force F; and moment 1/, are
given to the other, then the deformed state of the equivalent rod is determined from the vari-

ational equation

i
8{FaE—o6L=0 (3.8)

]

8L = (F:0F -+ M350 + M Ti=tPeagdfs, 1) lt=t
dp=="1/2e7PT40T1g

where e* is the two-dimensional Levi-Civita symbol.

Let us present an expression for F which is obtained as a result of solving the problem
(3.4)— (3.7) in the particular case of a regular cylindrical spring coiled from a circular rod
(i.e. Jub = J§=B, Jos — 0, 1% = J)

2F = I [(2nA=! + Q) YT — %2 = 20A-L YT —%o?)® + (3.9)

A 12 a.a°
J {2847t 4- Q) % — 204 x°]+J—-l/.z(J—1)V1—7‘\)2 *

This expression is derived under the assumption of smallness of Q. and cross terms be-
tween Q. and Q,, y are discarded.

Expressions for F under more general assumptions are cbtained later.

It turns out that the energy density of F is not a convex function of the strain charact-
eristics 8 and %, and the equivalent rod is apparently the simplest example of a model of a
continuous medium with a nonconvex energy density. This circle of questions is not examined
here.

4. Asymptotic analysis of the variational problem. Let us derive (3.1)— (3.7).
We consider the asymptotic in the small parameter A/L, the ratio between the length of acoil
of the spring and the characteristic scale of the change in a function in the slow argument g.

We seek * and T« as functions of the fast and slow variables: r' =r'(n, &), T =t &
where n =1 (}) is function introduced in giving the undeformed state of the spring. Substit-
uting r (n, E) in the first equation in (1.1) and extracting the principal components in the
asymptotic sense, we obtain rgg =0, i.e., in a first approximation, ,' are functions of just
the slow variable

r=F (4.1)

As yet the functions T, (N, E) are arbitrary. We represent r in the form r = F — ' (n, B),
where r" (n, §) are asymptotically small additions. Without limiting the generality, it can be
considered that (ry = (if &'y are not zero, then the equality {r'"> = 0 can be achieved
by redefining F and r: # — & 4 &', r 1" — ). It is seen from the first equation in
(1.1) that r* yield a contribution to the constraint if rt~ A. Hence, we assume that Pt o=
O (A). Let us fix the functions 7 and let us seek the functions rim, &) and t.'(y, B). We first
make the following substitution. ) )

We construct the functions x (§), {(E) and T, (§) by means of the fixed 7 (E) in conform-
ity with the formulas

% = (FaFop)l = dldE, §(0) =0. Fg =xTy (4.2)

We construct arbitrary vectors T, such that three vectors T, would form an orthonormaliz-
ed reference triad. We introduce the functions 0®(n, &) and the orthogonal matrix Qg m, &)
by the equalities )

=%, B @ =T (n. B (4.3)

If the constraint (2.7) is imposed on p°(n, §), then the vectors Tl are determined un-

iquely by using the transformation (2.6). Therefore, the functions T, (E), @ (n, &) and 0" (n, §)
satisfying the constraints (3.3), (3.5) and (3.7), are defined uniquely by means of given
", &), To(m, &) and 7 (§). Conversely, the functions r'* and 1. are reproduced by means of
the functions &, and p®and the formulas (4.3). )

Now, let us fix the functions 7 and the orthogonal matrix T,° that satisfy the relation-
ship (4.2), and we seek the functions Qe and p® that satisfy the constraints (3.5) and (3.7).
We substitute (4.3) into the functional (1.3) and the constraint (1.1). We discard the derxi-~
vatives Pal® s and @bz in a first approximation as compared with the quantitiesA™pgq,

A'aasin  and A7'ebin:
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Since for any function f(n, ) the equality

1 [
(rn@.nat =
[} V]

is valid in the limit A/L —0 , then from the condition of stationarity of the rod energy we
obtain the problem for the coil (3.4)— (3.7). )

After the problem for the coil has been solved, the functions F (f) and T (}) are de-
termined from the variational problem (3.2), (3.3).

5. Solution of the problem for the coil. We henceforth limit ourselves to the
consideration of springs which form a spiral line in the undeformed state (see the example in
Sect.2), here _

Boe = 0 (5.1)

i.e., the equivalent rod in the undeformed state is a line and not twisted.

In contrast to the example in Sect.2 in which the vectors T, coincided with the geometric
normal and binormal, it is later assumed that they can be turned around the vector 1, a
certain angle @, The corresponding functions p{, and af‘:, have the form

ply = Ry cos 2nm, plyy = R, sin 21, ploy = 0 (5.2)
aly) = —Cos Qo €OS 201 — %y sin @ sin 2y (5.3)
aly = —cos @, sin 271 + %o sin @p cos 2y, aley = —k, sin @,

oty = sin @p cos 2num -+ %, COS @ sin 2ny
o = sin @ sin 21 — %o €OS @y €08 2711}, ey = kg €OS P,

ol = —k,sin 2nn, ol = k, cos 2, afy = x

Here %, and k, are connected by the relationship k,= /1 — %,° while the length of the
coil A is expressed by the formula A = 2nRo/k,. 1If we set ¢,=0, ky = cos &, ®, = Sin & in
(5.3), then the functions p{y and af:) will go over into the corresponding functions from the
example in Sect.2.

The class of springs (5.1)— (5.3) is given by three parameters, for instance the quantit-
ies % H, and Qo which can be slowly varying functions of £. This class of springs is
basic in engineering applications.

The quantities 8§, are independent of the fast variable 7 and are given by the formulas

Ol = —2mk, sin @g, Ofoy = 21ke COS @y, By = 2nx0 (5.4)
The problem for a coil is formulated as a problem to find the minimum of the functional
1

20 =17 [4 (8 — B0y o) + Gacl°IA"L (8 — By ) + €] 0 5.3

0,, = 1/,eabcaff|a¢°, 'ﬁu = 1(;)“

in a set of all periodic functions g (N) and p°(n) satisfying the constraints (3.5)- (3.7),
where the constraint (3.6) takes the following form for the class of springs under considera-
tion

tso = %030 + A7'parn + €anc’p° (5.6)

The solution of the problem for a coil depends on four parameters Q. and % characteriz-
ing the strain of the equivalent rod, and three parameters %), R, and ¢, (in whose terms e?o)
and A are expressed), that carry information about the undeformed state. To obtain and Euler
equation of the variational problem (5.5), (3.5), (3.7) and (5.6), the functional (5.5) in
which the constraints (3.5), (3.7), (5.6) have been added with appropriate Lagrange multipl-
i_ers, must be varied. Nonlinear equations with constant coefficients are here obtained. For
« = 0 their exact solution can be obtained. 1In this solution the functions p°® and a, are
given by (5.2) and (5.3), in whichx and R =4 (2nA™? + Q)7 (k = Y1 — »?) must be substitut-
ed in place of %, and R,, and the root ¢ of the equation

Toa [(2nA™ 4+ Q) mg — A¥gye | mPeag = 0 (5.7

my = —ksing, m,=kcosq, mzy=xn
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in place of @g-

Equation (5.7) is a transcendental equation in ¢ and determines § as a funttion of % and

Q,;. In the general case it has two to four roots. The root to which it is possible to

arrive by varying x and £, continuously from the initial value of @, for = ¥ and §3 = (,
must be selected. An analysis of (5.7) shows that this condition extracts the root in a un-
ique manner. The solution of equation (5.7) depends substantially on the tensor /% and the
value of @p. For instance, if the tensor [®® is diagonal and ¢o='an (n =0.1 2. ...), then
there is a root @ = @ If meanwhile I = J§%f, then (5.7) has the root ¢= g, for any ¢,.
The cases listed are basic for applications.

Let the functions ps and ag be denoted by po* and @,*in the solution obtained. We shall
seek additions to the solutions p.* and a,* that are linear in .. We represent the required
quantities p, and &4 in the form

Pa = Pa* + Usy  Gap = agy® (8.5 + e,5V,) (5.8)

A

where u,(n) and va(n) are new required functions.

We substitute (5.8) into the functional (5.5) and the constraints (3.5), (3.7) and {5.86),
and we retain the principal terms in Q. . The principal terms in the functional @ will be
quadratic in £, since the linear terms vanish because of the Euler equations for p*, an*.
It is sufficient to keep only linear terms in the constraints since linear corrections in
to pg*and ag*are sought. Then to determine u, and v, we obtain a variational problem to find
the minimum of the functional

20, = (1% [A-tvg |y + (27472 + Og) eacam®v* + Qagg] X (5.9)
[Atvy -+ (2087 4 Q) egeamv? 4 Dboriy] +-
AN gpevinv® + H[(vam®)? — vgv"] + 2N*T0Be,atipv.

N == % [(2rA-t 4 ﬁs) my — A 5]
H =200~ + Og) k2N "mo

in the set of all periodic functions w,{(n) and i, (1) satisfying the constraints

Rpavye® = Al |+ CyeasgtP + e, T, * (5.10)
{ugy = 0 (5.11)
223 lnzo m() (5.12)

Let us note that the functional @, is invariant relative to the transformation
vV, =V, + img {5.13)
where { is an arbitrary constant. For given v, satisfying the constraints
(apavye™By =0 (5.14)

periodic functions U (n) satisfying the constraints (5.11) can always be found from (5.10).
Then by using the transformation (5.13) (the constraint (5.14) is also invariant relative to
this transformation), compliance with the eguality (5.12) can be achieved without changing the
value of the functiocnal. Hence, the problem for v, and u; can be solved as follows: first the
minimum of ¢, is sought in all the periodic v, (y) (here the minimizing element is determined
to the accuracy of the transformation {5.13)), then u,{n) are found from (5.10) and (5.11),
after which the constant ¢ is selected from condition (5.12).

The Euler equations for the variational problem (5.9), (5.14) will be linear inhomogene-
ous differential equations with constant coefficients, where the inhomogeneous terms are a
linear combination of Sines, cosines, and constants. Hence, v, have the form

Vg == gg gge”‘“‘ + gae'm“ (5.15)

Here ¢« are real, while g, are complex constants, ;i is the imaginary unit, and the bar
above the complex quantities denotes the complex conjugate. Possible resonance terms are not
in formula (5.15) since they do not satisfy the periodicity condition.

We also represent the functions agx* in an analogous form

Olgp = (Jop + Gup®0 -} Gopet™n (5.16)
‘?ns = ‘pa::s Qaa === Oy Gas =1, Gaa = ‘;’z‘%ﬁBas

* 5>
Wap =gt fnmos  Bap==8ap + t€aps
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Let us note that the relationship 4.3 = me holds.
The second order matrix Bep possesses the following properties

Bup= Bga, BBy =0, BapBBy= 2Ry (5.17)
BapB-)o = BGOB?ﬂ! Baﬂeav = tiﬁ

After substitution of (5.15) and (5.16), the constraints (5.14) result in the relation-
ships
e%PGonpp 4 e?BGayEp =0, €°Pmagp= 0

It can be confirmed that the general solution of these equations is given by the formulas

§° =z0% + ypeBBp 8, ¢*=tm® 4 zb98 (5.18)

where z and y are complex while z and t are real arbitrary constants.
We .substitute (5.18) into (5.9). We obtain a function of =z,y, 2z, { which must be mini-
mized in these variables

2Mp = So -+ 512Z + Sawf + (Kzj + Kzy) + (X2 + X2)+ (Yy + V§) + Sp2? (5.19)
Here

So=580,02, ;== (2n/A)? J oo, Psab?°b%® — Hk?
Sy = (20k/A)? J opb?VbB By — 4NA-YKENm, — HE?
K = (20/A) J o Pac % b8 Byp L 2nA-INpg, — HA?
83 =12 (27A-" + Q) J upe?vePPgy gy — Hk?

X =X,B%Q, Y =Y, By

S= l/d-lam: Jap = 1°d¢ca¢ab

bap =8ap +i(1 + 533 (2m)1) eqpa

Xo=— iﬂA"'Jaa‘P&b“ - il/zk'lNﬂmsll’aa

Yo= i:tA'-‘JagbB‘?B.,bmp“

The t does not enter (5.19), as should be because of the invariance of @, relative to the

transformation (5.13). The constant ! is evaluated after the determination of u, as has been
described above.

We find &z, y, 2 from the stationarity conditions for the function @,

z=a1(¥K — 8,X), y=a' XK — §,Y)
2=0, a=S5,8,— KK

The stationary value of the function @, has the form Y,EQ,Q% where

E =8 —c1[8,Y,7* + 8,X.X* — (KX.Y® + KXY (5.20)

The coefficient E depends on Q,. x  and characteristics of spring. This dependence is
complex in the general case. The expression for E simplifies substantially if cross effects
between the bending and torsion-tension of the equivalent rod are neglected, i.e.., 53 =0
and x =% must be set in the expression for E.The simplification is related to the fact that
H and N, vanish in this case while }® = B", and therefore, (5.17) can be applied to  poB,
We consequently obtain for E (I,,' is the inverse matrix to I“b)

E gy wmme = Eo = 2 (I3"* — Im&,mly)-t (5.21)

6. Equations of the equivalent rod. Thus, the expression

2F = I [(2nA™ + Q) me — A0gal X (6.1)
(1A + Q) mp — A7 0,51 + EQQ®
m = —VY1—xsing, me=y1 —%2cos @, my=1x

is obtained for F.

Here ¢ is a function of g‘za and % given implicitly by (5.7), and E is given by (5.20).
Let us note that (5.7) can be obtained by equating the partial derivative of F with re-

spect to ¢ to zero for Q, = 0.

p1173
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The Euler equations following from the problem (3.2), (3.3), (3.8) have the form
M = ~ 0, M, + 5T, F*, M7, |yt = M (6.2)
T=19F, fii=#"

- b= s ~i=
@g ="/2€4p T, tTiy Tl = 8ap

The moment M, and the tensile force T are determined by the equations of state

M, = 6FleQ°, T = oFlox (6.3)
If E =E,, then the equations of state take the form
M®=EQ%, 3M3=Im,[(2nA~! + Qg) my — ABgp] (6.4)

T = (27A7" 4 Q) I%Pmgn (1 — %3t + 1] x
[(2nAt + $Tg) mq — A-18y4]

7. Examples. 1°., We examine the problem of tension-torsion of a spring (F*= Mi=20
for i=1,2). We represent the required functions % and # in the form

Tl = (cos 0 (£), —sin O (&), 0)
Ti% = (sin O (§), cos 8 (§), 0)
Fis = s, Fl = [ (§) 8"

We consider @ =0 and L(k) = t(5 in the undeformed state.

Then the equations for the equivalent rod go over into the following two relationships
for the functions 6 () and & (§):

. __ 3
W=, T=F (7.1)
where @® and T are determined by (6.4), where ;= —0;, x= {;.

Equations (7.1) determine the functions 6(§) and (8 to the accuracy of the solid
motion of the equivalent rod, which is fixed, say, by giving the location of cne of the ends
of the spring. Knowing Ps: and a, the shape of the spring can be determined from (3.1).

The solution of (7.1) reduces to solving a system of three finite equations in 0. &; ¢
and a simple quadrature.

If the spring is a regular cylindex, i.e., the quantities O, I®* and A are const-
ants, then it can be verified that (7.1) are equivalent to the exact equations of the initial
problem (1.1) - (1.5). This is natural since in this case the quantity A/L used as a small
parameter in the variational-asymptotic method, is zero.

20, Let us consider the problem of pure bending of a spring by forces applied to its
ends, which produce moments equal in absolute value to M. 1In this case it can be considered
that Fi=0, M*= M, M* = M®= 0. We represent the required functions Tie(f) and (8 in the
form

&
! = (5in 0 (E). 0, — cosd (), T‘=Sxo(s)cose(s)ds (7.2)
o
7i? == (0,1,0), ?=0
£
713 — (cos 0 (E), 0,8in 8 (), M= 5 % (5) $in 8 (s) da
(]
where @ (f) is the new required function that equals zero in the undeformed state.
Then (6.2) and (6.4) reduce to the relationship B,5=M/E., £from which
(7.3)

ds
e(z)=M§W+B(0)

0

1f g, = const (for instance, for a regular cylindrical spring) , then the state of strain
of the equivalent rod is mapped by the arc of a circle of radius
R = %EJM (7.4)
When the tensor Jo is of diagonal form, where J%f— 7698, % =J, then (7.4) goes over into
the following expression

R = sin aq {{1/1 — Y, (T —4/1) cos ag} M}~
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where @, is the pitch of the coil of the spring in the undeformed state. This formula is in
agreement with the expression obtained by S.P. Timoshenko /2/.

If Jeb = J§¢, then (7.2)— (7.4), (3.1) yield the exact solution of the initial problem
(1.1)— (1.5) obtained in /10/. This fact has the same explanation as the analogous result in
the preceding example.

8. Physically linear theory of an equivalent rod. Let us expand the energy of

the equivalent rod (6.1) into a series in the measures of the strain Q, and ¥ = 1, ((efng)2 — 1)
and let us discard all terms of order higher than the second, We obtain

oF = Ay® + B @,)° + 2C0yy + EQ.Q° (8.1)

A = @aA Y —(Gxy — Gg) D™ + Iy + ol —
2%013] %02 (1 —_ on)_z

B=1—GD" C=2aA)(Gre— Gy) GD™ + I3 —
ol ] %o (1 — %%

G = Laampeg®mpP, G; = Isatp™m)

D = Iape-paeBM’(o)vfn(o)oy I = Il'bm(o)am((hbv Ia = Isﬂm’(l’)a

which is the energy of a physically linear theory of an equivalent rod.
If the tensor I, is diagonal and the diagonal elements equal the quantities /,, /, and
J, then the coefficients A, B, C and E, in the energy (8.1) have the form

A = 2aA ™2 xe? [T — Tag? (1 — %D
B=Jxt +1(1 —u), C=2nA%(J 1)
Eo =211, + 41,) + A7 — 1/Hd — )7
I = LI/, cos® gy + 1, sin® gg)

In the geometrically linear theory, it is necessary to take

— b . de dv?
Qa=‘*‘aﬂT;2" Q"=T§-' Y=g

for 2, and y , where vl is the displacement of the equivalent rod, and 6 is its torsion. We
arrive here at the linear theory of springs constructed in /6/.
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