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PROBLEM OF AN EQUIVALENT ROD IN NONLINEAR THEORY OF SPRINGS* 

V.L. BERBICBEVSRII and V.G. SUTYRIN 

A spring with a large number of coils can approximately be considered as a one- 
dimensional continuum (an equivalent rod), whose particles axe the coils of the 

spring. The problem of an equivalent rod is to construct the equations describing 
this continuum and to calculate the characteristics of the equivalent rod by means 
of the coil geometry and the elastic properties of the spring material. Theproblem 
of an equivalent rod has been investigated thoroughly in linear theory /l-6/. In 
the geometrically nonlinear theory it remains substantially open (only certainexact 
solutions of problems on the tension, torsion, and bending of springs were known /7- 

100. 
The problem of an equivalent rod is solved below by a variational-asymptotic 

method /ll- 14/. 

1. Theory of inextensible rods /7,14/. In the classical theory, a rod is modeled 
by a curve r, equipped with an oriho reference triad T, (ra, b, E = k&3), whose vector T3 is 
tangent to r. The curve I' can be considered as the middle line of a rod, while the plane 
swept by the vector ra can be considered as the plane of the transverse section of the rod. 
The rod state of strain is given by the components r'(E) of the radius-vector of points of 
the curve P and by the components r,,'(g) of the vectors % (eEI8, 4 is the arclength along 
F, the superscripts i,j. k correspond to projections on the axes of the Cartesian coordin- 

ate system of the observer z' and run through the values 1,2,3; the quantities with super- 
and subscripts agree; the site of the index is selected in conformity with the rule of sum- 
mationoverrepeatedsub- and superscripts). It is assumed that the coordinate system of the 
observer and the ortho reference triad r, have identical orientation , and the determinant of 
the orthogonal matrix l/r:I = +1. 

The quantities ri and %d satisfy the constraints 

dr’/G = z:, ziai~ib = S,b (1.1) 

where & is the Kronecker delta. The state of deformed of an inextensible rod has three 
functionally independent degrees of freedom. 

The curvature and torsion of the curve I' is characterized by the quantities tia = 
l/$abCr,$briC, where e,h is the Levi-Civita symbol, the comma before the 6 in the subscript de- 
notes differentiation with respect to E, 

The measures of the strain of an inextensible rod && are introduced by the equalities 

Q, = Wa - O(O). (1.2) 

The subscript (8) denotes the value of quantities in the unstrained state. 
is characterized by the quantities 

Rod bending 

When r’ and 
&(a, fi, y, 6 = 1, 21, and the torsion by the quantity $&. 

* axe given at the ends of the rod, 
stationary point o";l the functional /14/ 

the true position of the rod is the 

where Iab is the cross-section stiffness tensor. 

2. Springs. A spring is an elastic rod with a special undeformed state. We will des- 
cribe these states (in this section the consideration is for the undeformed state; to avoid 
awkwardness in all the formulas the subscript 0 referring to the undeformed state will be omit- 
ted). 

Let there be a certain space curve F given by the equations z$ = f'(G), 
natural parameter along F, and provided with an ortho reference triad Y,,(c) 

where 6 is a 

di’ d’ 
such that T' s= 

5. Let US represent the radius-vector of the rod middle line r from which the spring is 
coiled in the form 

*Prikl.Matem.Mekhan.,Vo1.47,No.2,pp.238-248,1983 

197 



198 

9 (%I = F’ (5) + P" (5) G' (5) 5 = 5 (5) 

Here p" (5) and c(t) are functions satisfying the condition clr”fdEdri/d~ = 1. 
ities P"(E) have the meaning of projections of the local radius vector 

Tne quant - 

reference triad vector ?a. 
ri _ ii on the ortho 

Let us introduce the projections aab of the vectors 7, with which the rod middle line is 
provided, by the vector ‘ib 

?a 
i = aafi7bi (2.2) 

Just as all the orthogonal matrices to be encountered later, the orthogonal matrix 11 ah(:]l 
has a determinant equal to 1 by definition, 

Formulas (2.1) and (2.2) can be written for the undeformed state of an arbitrary rod. 
We call an elastic rod a spring if functions ii(<) and 

tions p"(Q,cc,b(g) and the physical characteristics Jab 
%‘(Q exist such that the func- 

Y) 
are represented in the form of a 

function f(q,;k) of a fast variab3.e q and a slow variab e E (where V) = n (f)) with the fol- 
lowing properties: 1) the function f is periodic in n with period one: 2) dnjc@ z i/A (j) 33 
eenst,>O, A<& 3) the characteristic scale Lof variationofthe function 
A((D in { satisfy the condition 

f fq, E)l,,=COl,S~ and 

?Sa = l/peobc7~'b, ?tc 
A<L. Moreover, for springs the functions 

will be considered functions of the slow variable 
x E dc/dE and 

springs has the meaning of the local length of a coil of the spring. 
5. The quantity A @for 

For brevftylater,we assume that explicit mention of the arguments 9 or 8 in any of the 
functions means that it satisfies conditions l)- 3). 

Let us present an example. We set ii = aic, ii1 = bi, 72t = 2, where ai_ bi, 2 are constants of 
mutually orthogonal unit vectors, and 

Here Ris the radius of the spring, the positive quantity A is the Length of a coil, and 
a is the pitch of the coil. The quantities R, A and a are constants related by the expses- 
sion 2nR = Acosa. 

The curve r defined by (2.1) and 12.3) is a regular spiral line. The ortho reference 
triadwithwhich the line r is provided will be selected to consist of the tangent vector r3 
and the geometric normal and binormal ',,Q. Then the components of the OrthogOnaL matrix a&, 
representing the projections of the vectors T= on the vectors @, are determined by the form- 
ulas 

c&,b = (-COs 27Cn, --sin 2X?, 0) 

es = (sin a sin Znq, -sin a co9 2nq, cosa) 
(2.4) 

a,4 = (-cosa sin Zxq, cos a cos 2nq, sin a) 

We take the functions lab as constants. Springs defined in this manner are called re- 
gular cylindrical springs, their geometry is given by two parameters,R and a, say. The quant- 
ities; ma are constant here 

ox = 0, oa= 2nA-1 cos a, es = 2nA-1 sin a 

where e, and es have the respective meanings of the geometric curvature and torsion of the 
curve r, while the function i&zmO. 

We define the operation of taking the average for any function of the fast variable r) by 
the formula 

If f F f(n,f), then the quantity <f> can depend on s and satisfy condition 3), i.e., if 
is a slightly varying function of 5 at distances of the order of A. 

Without limiting the generality, it can be considered that the functions p"(Ij* 5) in (2.1) 

are subject to the constraints 

<P" (qr E) > = 0. (2.5) 

If the functions pa do not satisfy (2.5), then its satisfaction could be achieved by 

making the replacement ii +9+ <p">~~O'. 
The relationship <r*>= i' holds because of (2.5). Therefore, the curve Fyieldsthemid- 

dle axis of the spring and it can be interpreted as the axis of an equivalent rod. 
The equivalent rod is provided with the ortho reference triad%. If the functions ri and 

%a' (and therefore also i') are known, then the ortho reference triad 7, is not reproduced 

uniquely: the transformation of turn of the vectors Fe through a certain angle around the 
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vector i3 does not change r',%' and ?" 

Hence, additional conditions uniquely defining the ortho reference triad is are needed. We 
take the following constraints as such conditions 

paLl==e=o, Pllrpa>O (2.7) 

Conditions (2.7) define the orthogonal matrix 48*(e) uniquely if these conditions are not 
satisfied for the ortho reference triad 'i,, taken initially. 

The quantities 0. for springs are calculated from the fo?mdaS 

o,(q,E)= A-% + xa,bob + 1/&d"hc (2.8) 

e.M)= %b&&dc 

The vertical bar in the subscripts before the q and e denote partial differentiation of 
the functions dependent on the fast and slow variables with respect to q,E. 

The solution of the problem (l.l)- (1.3) for springs oscillates rapidly. The exact form- 
ulation of the problem (l.l)- (1.3) should be replaced by an approximate "average" in which 
functions of E that vary slightly at distances of the order of the coil length A appear. 

3. The problem of an equivalent rod. It is later shown that for springs the func- 
tions r'(e) and zO'(f) in the deformed state are representable in the form 

Th; functions P" are of the order of A (as A +O). The functions p' and a," depend on F' and 

Tc and their first derivatives, hcwever, this is not emphasized in the notation. 
The functions x = dcldf, and ijb = 'i~&,EfbiiC vary slightly at a distance of the order of 

A. The functions P"(q) and the orthogonal matrix a&,(n) satisfy conditions I)- 3) of Sect. 
2 and the constraints (2.5) and (2.7). 

The functions f' and 3,' determine the state of the equivalent rod in the deformed posi- 
tion and are found from the condition of stationarity of the functional 

(3.2) 

in a set of functions P' and 7,' satisfying the constraints 

di'VcQ = tai, ?&, = &a* (3.3) 

Here F is a function of the measure of the deformed of the equivalent rod 

3i, = x& --x&or and y = l/* ((&o)* - 1), 

which are quantities characterizing the undeformed state 
eristics Iab of the rod from which the spring is coiled. 

x0, $0~ and the physicalcharact- 

To calculate F the problem must be solved per coil 

F=inf@, cD=(l/Jab!&R~) (3.4) 

a .=A-1(8*- e@) d) + %ab + 6&b- ~0~~)~~~ 

where the lower bound is taken over all periodic functions 
Gob (‘I) and Pa t-4) satisfying the 

constraints 

a&b - ’ - &b (3.5) 

ati=&,-+ A-'P,in + eaactEb + &&P~ (3.6) 

(p",=O, pzIn-o=O, Pllrt=rJ>O (3.7) 

The quantities %,. A, xo and &O)O intheproblem (3.4) 
while lab, OcOh 

- (3.7) are constant parameters, 
and a(o)ob are given periodic functions of rl. 



The boundary conditions for the functions Zi and tr are found from the calculated func- 
tions p"(q) and c&,(,(q) and the known boundary values of the functions ri and tOi from (3.1). 

If justoneend of the spring is rigidly clamped, while a force F, and moment .lIi are 
given to the other, then the deformed state of the equivalent rod is determined from the vari- 
ational equation 

tjiFd&6L=O (3.8) 
0 

where e@ is the two-dimensional Levi-Civita symbol. 
Let us present an expression for Fwhich is obtained as a result of solving the problem 

(3.4)- (3.7) in the particular case of a regular cylindrical spring coiled from a circularrod 
(i.e. 14 = zw, ps = 0, 153 = J) 

2FxI [(2nA-l+~~)~-22nA-'~~]* + (3.9) 

J [2nA-I+&) x - BnA-'x,4'+ 
IJ - -a 

J - I/( (J - I) m 
Qe.Q 

Th&s expression is derived under the 
tween Q, and Ds, y are discarded. 

Expressions for F under more general 
It turns out that the energy density 

eristics 3, and x, andtheequivalent rod 
continuous medium with a nonconvex energy 
here. 

assumption of smallness of a, and cross terms be- 

assumptions are obtained later. 
of F is not a convex function of the strain charact- 
is apparently the simplest example of a model of a 
density. This circle of questions is not examined 

4. Asymptotic analysis of the variational problem. Let US derive (3.1)- (3.7). 
We consider the asymptotic in the small parameter AfL, the ratio between the length ofacoil 
of the spring and the characteristic scale of the change in a function in the slow argument E. 

We seek r’ and ra' as functions of the fast and slow variables: ri = r’(q, e), T,~ = xai(q, E), 
where n=n (6) is function introduced in giving the undeformed state of the spring. Substit- 
uting r’(q, &) in the first equation in (1.1) and extracting the principal components in the 
asymptotic sense, we obtain rIq i=.O, i.e., in a first approximation, r1 are functions of just 
the slow variable 

+ = ii (E) (4.1) 

As yet the functions 'cni(n, 5) are arbitrary. We represent r* in the form ri = i;’ T r”(q, E), 
where rri(q, E) are asymptotically small additions. Without limiting the generality, it can be 
considered that. (rli)= 0 (if (r’) are not zero, then the equality (rti)= 0 can be achieved 
by redefining i' and r”: i’ + 7’ + (Ji), r” +r” - <i-l’)). It is seen from the first equation in 

(1.1) that r’* yield a contribution to the constraint if r” - A. Hence, we assume that r” = 

0 (A). Let us fix the functions f' and let us seek the functions r"(n, f) and lei(nl, 5). We first 

make the following substitution. 
We construct the functions x(E), c(E) and Y:(g) by means of the fixed i'(E) in conform- 

ity with the formulas 

x = (i,Eiii,E)'I* li dc/d& 5 (0) = 0. F,E’ = xTi,’ (4.2) 

We construct arbitrary vectors Ti, such that three vectors Y,, would form an orthonormaliz- 

ed reference triad. We introduce the functions ()"(n,g) and the orthogonal matrix anb h 8 

by the equalities 

r ‘f = y,,ip” (11, E), T..’ = f’banb (11. 5) (4.3) 

If the constraint (2.7) is imposed on pa (11, 5) I then the vectors 7h' are determined un- 

iquely by using the transformation (2.6). Therefore, the functions ya' (g), cab (n, 5) and P" (% 5) 

satisfying the constraints (3.3), (3.5) and (3.7), are defined uniquely by means of given 

r" (n, E), tai (II, 5) and i' (5) * Conversely, the functions r" and %i are reproduced by means of 

the functions a,b and pa and the formulas (4.3). 
NOW, let us fix the functions i' and the orthogonal matrix i,,' that satisfy the relation- 

ship (4.2), and we seek the functions agb and oathat satisfy the constraints (3.5) and (3.73 - 

We substitute (4.3) into the functional (1.3) and the constraint (1.1) - We discard the deri- 

vatives Pa\g, adb(E and a(0iabis in a first approximation as compared with the quantitiesA-'palll, 

A-'a.b(rl and h-‘ac~~bl~- 
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Since for any function f(q, 5) the equality 

is valid in the limit A/L +O , then from the condition of stationarity of the rod energy we 
obtain the problem for the coil (3.4)- (3.7). 

After the problem for the coil has been solved, the functions ii(&) and G'(E) are de- 

termined from the variational problem (3.2), (3.3). 

5. Solution of the problem for the coil. We henceforth limit ourselves to the 

consideration of springs which form a spiral line in the undeformed state (see the example in 

Sect.Z), here 
G(O)0 = 0 (5.1) 

i.e., the equivalent rod in the undeformed state is a line and not twisted. 
In contrast to the example in Sect.2 in which the vectors 1 a coincided with thegeometric 

normal and binormal, it is later assumed that they can be turned around the vector TQ a 
certain angle 'PO. The corresponding functions ppoj and a$ have the form 

pfo, = R, cos 2nq, pTo, = R, sin 2s~ pTo, = 0 
(5.2) 

a& = -cos 'p. cos 25~~ - x,sin cp,sin 2sn (5.3) 

a$ = -cos 'p. sin 2n?j + x0 sin cp0 Cos 2nq, a$, = -k, sin rpO 

a::, = sin cp0 cos 2nn +x0 cos cp,sin 2nq 

a:) = sin 'p. sin 2ng - x0 Cos ‘p. cos 2q, a$) = k, co6 ‘pO 

a$, = -k, sin 29, a3 = k, cos 2nq, a3 = x 

Here XI, and k, are connected by the relationship k, = fm while the length of the 
coil A is expressed by the formula A = 2nRoik,. If we set 'p. = 0, ho = ~0s a, x0 = sin a in 
(5.31, then the functions p;b, and a$ will go over into the corresponding functions from the 
example in Sect.2. 

The class of springs (5.1)- (5.3) is given by three parameters, for instance the quantit- 
ies X0* R. and 90, which can be slowly varying functions of E. This class of springs is 
basic in engineering applications. 

The quantities SF,, are independent of the fast variable n and are given by the formulas 

CJ;,, = -2rck, sin cp,, e:o, = 2nko cos cp,, e:o, = 2n%o (5.4) 

The problem for a coil is formulated as a problem to find the minimum of the functional 

(5.5) 

in a set of all periodic functions a&(q) and p"(n) sHtisfying the constraints (3.5)- (3.7), 
where the constraint (3.6) takes the following form for the class of springs under considera- 
tion 

asa = x60, + A%,I~ + eaabPc (5.6) 

The solution of the problem for a coil depends on four parameters fi,, and x characteriz- 
ing the strain of the equivalent rod, and three parameters x09 R, and q. (in whose terms 8' 
and A are expressed), that carry information about the undeformed state. To obtain and Eui% 
equation of the variational problem (5.51, (3.5), (3.7) and (5.6), the functional (5.5) in 
which the constraints (3.51, (3.7), (5.6) have been added with appropriate Lagrange multipl- 
iers, must be varied. Nonlinear equations with constant coefficients are here obtained. For 
3, = 0 their exact solution can be obtained. In this s$ution the functions p' and a&, are 
given by (5.2) and (5.31, in which x and R = k (%A' -I- 9,)-l (k E f-j must be substitut- 
ed in place of x0 and R,,, and the root cp of the equation 

P' [(2nA-' + fiJ m. - A-lO(o)a 1 m@e,, = 0 

m, = -ksin cp, m2 = k cos cp, m, = x 

(5.7) 
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in place of TO. 

csi,. 
Equation (5.7) is a transcendental equation in cp and determines 01 as a funttj.on of x and 

In the general case it has two to four roots. 
arrive by varying x and Eii, 

The root to which it is possible to 

must be selected. 
continuously from the initial value of rpO for x =xg and a, = 0, 

An analysis of (5.7) shows that this condition extracts the root in a un- 
ique manner. The solution of equation (5.7) depends substantially on the tensor Iab and the 
value of 'pO. For instance, if the tensor lab is diagonal. and 'pa = l’s~n (n = 0. 1. 2. . ..). then 
there is a root (p='Po. If meanwhile Ia@ = I&s, then (5.7) has the root 
The cases listed are basic for applications. 

m= 'po for any To. 

Let the functions pa and ccab be denoted by po* and cr,a*in the solution obtained. We shall 
seek additions to the SohtionS pa* and a&* that are linear in &. We represent the required 
quantities Pa and ar,& in the form 

Pa = Pa* i- %, aab = adb* (sad + e dcv ) a e (5.83 

where K,(T)) and v,(n) are new required functions, 
We substitute (5.8) into the functional (5.5) and the constraints (3.5), (3.7) and 15.6), 

and we retain _the principal terms in G= . The principal terms in the functional (a will be 
quadratic in a, since the linear terms vanish because of the Euler equations for pa"? c&b*’ 
It is sufficient to keep only linear terms in the constraints since linear corrections in a, 
to P,*and a@*are sought. Then to determine un and va we obtain a variational problem to find 
the minimum of the functional 

15.9) 

in the set of all periodic functions ~a (rl) and U=(q) satisfying the constraints 

a&vye@ =A-'n a IV + Gik+-@i- e,p’ZESp,* 15.10) 

<%a> = 0 15.111 

US I,,=0 = 0 (5.12) 

Let us note that the functional @:'1 is invariant relative to the transformation 

vrl -+v, i t=* 15.131 

where t is an axbitrary constant. For given Y,, satisfying the constraints 

(akv,e@)=O (5.14) 

periodic functions Ua (11) satisfying the constraints (5.11) can always be found from (5.10). 
Then by using the transformation (5.13) (the constraint (5.14) is also invariant relative to 
this transformation), compliance with the equality (5.12) can be achieved without changing the 
value of the functional. Hence, the problem for vn and u, can be solved as follows: first the 
minimum of QD, is sought in all the periodic v=(q) (here the minimizing element is determined 
to the accuracy of the transformation (5.13)), then u,,(q) are found from (5.10) and (5.111, 
after which the constant t is selected from condition (5.12). 

The Euler equations for the variational problem (5.9), (5.14) will be linear inhomogene- 
ous differential equations with constant coefficients, where the inhomogeneous terms are a 
linear combination of sines, cosines, and constants. Hence, vn have the form 

v, - qa + gd+** + fWMQ (5.15) 

Were qG are real, while g, are complex constants, i is the imaginary unit, and the bar 
above the complex quantities denotes the complex conjugate. Possible resonance terms are not 
in formula (5.15) since they do not satisfy the periodicity condition. 

We also represent the functions a&* in an analogous form 
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Let us note that the relationship *or = m, holds. 
The second order matrix &B possesses the following properties 

&,= Bea, B=bB,, = 0, B,pB@, = 2Bw 

B,$& = BtiBvp, Bag6 = iBvfi 

After substitution of (5.15) and (5.16), the constraints (5.14) result in 
ships 

It can be confirmed that the general solution of these equations is given 

g'=xPs+ yg@R&F, qa=tma+26~ 

where x and y are complex while s and t are real arbitrary constants. 
We substitute (5.18) into (5.9). We obtain a function of x, y, z, t which 

mized in these variables 

Here 
-- 

So=SC&CP, S1 = (~sL/A)~ JPb$&tibaCbdb - Hk2 

Sz = (2~k/A)~ J,p~VbbfiB,b - 4nA-lkaN"m. - Hii2 

K = (2n/A)a J,,&~b9W+JP” f 2xA-'Nalpso - Hk2 

Ss= ‘J8 (&A-'+ H,)J,#%?@~~a - Hkz 

x = x,wTip, Y = Y,Baq 

S = ‘/rJa”, Job = I=%c&db 

hb = f&b + i (1 + %A @n)-? %ba 

X, = - inA-'J,,$tibcP - i1/,h-1NBm&8, 

Y a = inA-LJ,gbBv B,blpaa 

The t does not enter (S-19), as should be because of the invariance of o1 
transformation (5.13). The constant t is evaluated after the determination of 
described above. 

We find 5, y, z from the stationarity conditions for the function @)2 

.r = u-1 ('PK - S,X), y = .-I (XK - S,Y) 

z = 0, a = S,S, - KR 

The stationary value of the function @, has the form l/,EH.Ha where 

E = S - P[S,Y,F'=+ S,X,x= - (KX,Y= + Kx,-a,l 

(5.17) 

the relation- 

bythe formulas 

(5.18) 

must be mini- 

(5.19) 

relative to the 
U, as has been 

(5.20) 

The coefficient E depends on a2,. x and characteristics of spring. This dependence is 
complex in the general case. The expression for E simplifies substantially if cross effects 
between the bending and torsion-tension of the equivalent rod are neglected, i.e., a,=0 
and x = x0 must be set in the expression forE.The simplification is related to the factthat 
H and il;, vanish in this case while bab = Bob, and therefore, (5.17) can be applied to b@. 
We consequently obtain for E (I&-’ is the inverse matrix to Jab) 

E&,+,.x=x.= ho= 2(1;'" - z;~&,&)-1 (5.21) 

6. Equations of the equivalent rod. Thus, the expression 

2F = Pb [(ZnA-' + G3) m, - A-'&,.] x (6.1) 

[(2nA-' f G,) mb - A-'9(0,bl $ Ea.& 

ml= -flmsincp, m? =-(=COSQ, m3=x 

is obtained for F. 
Here cp is a function of 3, and x given implicitly by (5.7), and E is given by (5.20). 
Let us note that (5.7) can be obtained by equating the partial derivative of F with re- 

spect to v to zero for G', = 0. 
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The Euler equations following from the problem (3.2), (3.3), (3.8) have the form 

flfc= -~@~~;fl~-,- @bS;+bF(,.va;oiI+, = .k# (6.2) 

T=;lsF -* il ',6 = i'8 

0,=11$0bc;f\tie9 &,= &,b 

The moment fl, and the tensile force T are determined by the equations of state 

&?'a = aFii%', T = dFli?x (6.3) 

If E=Eor then the equations of state take the form 

Ma= Eaa, l~a=~bm~[(&l~-' + ns)m, - d-'8(,,b] (6.4) 

T=(ZW.I-~ + ~J[Za8mpc(1 -SC')-' + 1'*] x 

[(2nA-' + %)m,- A-%,,] 

7. Examples. lo. We examine the problem of tension-torsion of a spring (P= M'= o 
for i = 1,2). We represent the required functions TiO and ii in the form 

fil = (co8 0 (E), -sin 8 (E), 0) 
f'* = (sin 0 (&), cos 0 (E), 0) 
7'9 = &is, $ = 6 (E) @a 

We consider e(E)= 0 and c(&)= L(k) in the undeformed state. 
Then the equations for the equivalent rod go over into the following two relationships 

for the functions e(E) and 6(E): 
ps= &f', T = P 

(7.1) 

where AP and T are determined by (6.4), where &= --B,t.%= 6,~. 
Equations (7.1) determine the functions e(5) and S(k) to the accuracy of the solid 

motion of the equivalent rod, which is fixed, say, by giving the location of one of the ends 
of the spring. Knowing PCS and (I~ the shape of the spring can be determined from (3.1). 

The solution of (7.1) reduces to solving a system of three finite equations in O,,,C,t,vl 
and a simple quadrature. 

If the spring is a regular cylinder, i.e., the quantities t&Iab and b are const- 
ants, then it can be verified that (7.1) are equivalent to the exact equations of the initial 
problem (1.1) - (1.5). This is natural since in this case the quantity AIL used as a small 
parameter in the variational-asymptotic method, is zero. 

20. Let us consider the problem of pure bending of a spring by forces applied to its 
ends, which produce moments equal in absolute value to M. In this case it can be considered 
that P = 0, M* = M, Ml = :IP = 0. We repreeent the required functions ?" (i) and ii (E) inthe 

form 

$1 = (sine g). 0, - co9 e (Eh i~&&?)cosB(l)b 
0 

r"P(O,l,O), f=O 

si* = (c0se (E), 0, sine (c)j, 3 = 5 X,(S) sine (I)& 
0 

(7.2) 

where e(i) is the new required function that equals zero in the undeformed state. 
Then (6.2) and (6.4) reduce to the relationship O,. - MtE( from which 

8 (El = M 5 * + e to) ( 

0 

7.3) 

If &= 00n3t (for instance, for a regular cylindrical spring), then the state of strain 

of the equivalent rod is mapped by the arc of a circle of radius 

ii= x,EdM (7.4) 

When the tensor pb is of diagonal form, where Iafl= I@, P-J, then (7.4) goes Over into 

the following expression 

ii= sin a,, ([Ur -=/,(1/J ---I/I) cos %] MY 
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where o0 is the pitch of the coil of the spring in the undeformed state. This formula is in 

agreement with the expression obtained by S.P. Timoshenko /2/. 
If I"b = 160 I then (7.2)- (7.4), (3.1) yield the exact solution of the initial problem 

(l.l)- (1.5) obtained in /lo/. This fact has the same explanation as the analogous result in 

the preceding example. 

the 
and 

8. Physically linear theory of an equivalent rod. Let us expand the energy of 

equivalent rod (6.1) into a series in the measures of the strain fia and ~=1/2((~/x0)z - 1) 
let us discard all terms of order higher than the second, We obtain 

-- 
2F = A$ + B(i&2 + 2C73,y + E&&Q= 

(8.1) 

A = (2nA-')']-(Gx, - G3) D-’ + I,, +%,*I - 
2x01,1 %"* (1 - x02)-* 

B = I - G2D-‘, C = (2nA-')](Gxo - G3) GD-’ + I, - 
xollx, (1 - x0*)-' 

which is the energy of a physically linear theory of an equivalent rod. 
If the tensor I,b is diagonal and the diagonal elements equal the quantities I,, I, and 

J, then the coefficients A, B, C and E, in the energy (8.1) have the form 

A = (2nA-')*x0* [J - 1x,* (1 - x02)-‘] 

B = Jxo* + f (1 - x01), C = 2sA-'x2 (J - I) 

E, = 2 [(I/I, + 1/I,) + (l/J - l/1)(1 -x0*)]-' 

1 = Z,Z,/(1, CosL rpO + I, sin* mO) 

In the geometrically linear theory, it is necessary to take 

5=,=--e 
a+ de dti 

OBT' $=yjp Y=r 

for a and y , where vi is the displacement of the equivalent rod, and 8 is its torsion. We 
arrive here at the linear theory of springs constructed in /6/. 
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